Evaluation of limiting factors for current density in microbial electrochemical cells (MXCs) treating domestic wastewater
نویسندگان
چکیده
This study quantitatively assessed three limiting factors for current density in a microbial electrochemical cell (MXC) treating domestic wastewater: (1) buffer concentration, (2) biodegradability, and (3) particulates. Buffer concentration was not significant for current density in the MXC fed with filtered domestic wastewater (180 mg COD/L). Current density reduced by 67% in the MXC fed with filtered sewage having similar COD concentration to acetate medium, which indicates poor biodegradability of soluble organics in the wastewater. Particulate matters seriously decreased current density down to 76%, probably due to the accumulation of particulates on biofilm anode. Our study quantitatively showed that buffer concentration does not limit current density much, but biodegradability of soluble organics and fermentation rate of particulate matters in domestic wastewater mainly control current density in MXCs.
منابع مشابه
Producing Renewable Energy from Municipal Wastewater Treatment Using a Bio–electrochemical System
Concurrent renewable energy production and wastewater treatment are two main reasons for using microbial fuel cells (MFCs). In this study, real wastewater was used for treating and power generation by air cathode microbial desalination cells (ACMFC). The total duration of voltage generation by ACMFC was about 151.9 ±23.2 h. The maximum voltage produced from municipal wastewater treatment was 27...
متن کاملApplication of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment
Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel c...
متن کاملEffect of batch vs. continuous mode of operation on microbial desalination cell performance treating municipal wastewater
Microbial desalination cells (MDCs) have great potential as a cost-effective and green technology for simultaneous water desalination, organic matter removal and energy production. The aim of this study was to compare the performance of a MDC under batch and continuous feeding conditions. Hence, power and current output, coulombic efficiency, electron harvest rate, desalination rate and COD re...
متن کاملEquivalent Electrical Circuit Modeling of Ceramic-Based Microbial Fuel Cells Using the Electrochemical Impedance Spectroscopy (EIS) Analysis
The effect of the thickness of ceramic membrane on the productivity of microbial fuel cells (MFCs) was investigated with respect to the electricity generation and domestic wastewater treatment efficiencies. The thickest ceramic membrane (9 mm) gained the highest coulombic efficiency (27.58±4.2 %), voltage (681.15±33.1 mV), and current and power densities (447.11±21.37 mA/m2, 63.82±10.42 mW/m2) ...
متن کاملGeneration of High Current Densities by Pure Cultures of Anode-Respiring Geoalkalibacter spp. under Alkaline and Saline Conditions in Microbial Electrochemical Cells
UNLABELLED Anode-respiring bacteria (ARB) generate electric current in microbial electrochemical cells (MXCs) by channeling electrons from the oxidation of organic substrates to an electrode. Production of high current densities by monocultures in MXCs has resulted almost exclusively from the activity of Geobacter sulfurreducens, a neutrophilic freshwater Fe(III)-reducing bacterium and the high...
متن کامل